Abstract

It is known that Perceptual Aliasing may significantly diminish the effectiveness of reinforcement learning algorithms [ Whitehead and Ballard, 1991 ] . Perceptual aliasing occurs when multiple situations that are indistinguishable from immediate perceptual input require different responses from the system. For example, if a robot can only see forward, yet the presence of a battery charger behind it determines whether or not it should backup, immediate perception alone is insufficient for determining the most appropriate action. It is problematic since reinforcement algorithms typically learn a control policy from immediate perceptual input to the optimal choice of action. This paper introduces the predictive distinctions approach to compensate for perceptual aliasing caused from incomplete perception of the world. An additional component, a predictive model, is utilized to track aspects of the world that may not be visible at all times. In addition to the control policy, the model mus...

Keywords

Reinforcement learningAliasingPerceptionComputer scienceAction (physics)Artificial intelligencePerceptual learningComponent (thermodynamics)Process (computing)Machine learningPsychology

Affiliated Institutions

Related Publications

Publication Info

Year
1992
Type
article
Pages
183-188
Citations
319
Access
Closed

External Links

Citation Metrics

319
OpenAlex

Cite This

Lonnie Chrisman (1992). Reinforcement learning with perceptual aliasing: the perceptual distinctions approach. , 183-188.