Abstract
We propose a scheme for indoor place identification based on the recognition of global scene views. Scene views are encoded using a holistic representation that provides low-resolution spatial and spectral information. The holistic nature of the representation dispenses with the need to rely on specific objects or local landmarks and also renders it robust against variations in object configurations. We demonstrate the scheme on the problem of recognizing scenes in video sequences captured while walking through an office environment. We develop a method for distinguishing between 'diagnostic' and 'generic' views and also evaluate changes in system performances as a function of the amount of training data available and the complexity of the representation.
Keywords
Affiliated Institutions
Related Publications
SUN database: Large-scale scene recognition from abbey to zoo
Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases whi...
What, where and who? Classifying events by scene and object recognition
We propose a first attempt to classify events in static images by integrating scene and object categorizations. We define an event in a static image as a human activity taking p...
Deep convolutional neural fields for depth estimation from a single image
We consider the problem of depth estimation from a sin- gle monocular image in this work. It is a challenging task as no reliable depth cues are available, e.g., stereo corre- s...
NeRF
We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using ...
Object class recognition by unsupervised scale-invariant learning
We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible const...
Publication Info
- Year
- 2009
- Type
- article
- Pages
- 413-420
- Citations
- 1464
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/cvpr.2009.5206537