Real Spectra in Non-Hermitian Hamiltonians Having<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="bold-script">P</mml:mi><mml:mi mathvariant="bold-script">T</mml:mi></mml:math>Symmetry

1998 Physical Review Letters 6,254 citations

Abstract

The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded below. Replacing this condition by the weaker condition of ${\cal PT}$ symmetry, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These ${\cal PT}$ symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase space. This paper describes the unusual classical and quantum properties of these theories.

Keywords

Hamiltonian (control theory)Hermitian matrixPhysicsBounded functionEigenvalues and eigenvectorsMathematical physicsSpectral lineQuantum mechanicsMathematicsMathematical analysis

Affiliated Institutions

Related Publications

Publication Info

Year
1998
Type
article
Volume
80
Issue
24
Pages
5243-5246
Citations
6254
Access
Closed

External Links

Citation Metrics

6254
OpenAlex

Cite This

Carl M. Bender, Stefan Boettcher (1998). Real Spectra in Non-Hermitian Hamiltonians Having<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="bold-script">P</mml:mi><mml:mi mathvariant="bold-script">T</mml:mi></mml:math>Symmetry. Physical Review Letters , 80 (24) , 5243-5246. https://doi.org/10.1103/physrevlett.80.5243

Identifiers

DOI
10.1103/physrevlett.80.5243