Abstract
A versatile method, quartet puzzling, is introduced to reconstruct the topology (branching pattern) of a phylogenetic tree based on DNA or amino acid sequence data. This method applies maximum-likelihood tree reconstruction to all possible quartets that can be formed from n sequences. The quartet trees serve as starting points to reconstruct a set of optimal n-taxon trees. The majority rule consensus of these trees defines the quartet puzzling tree and shows groupings that are well supported. Computer simulations show that the performance of quartet puzzling to reconstruct the true tree is always equal to or better than that of neighbor joining. For some cases with high transition/transversion bias quartet puzzling outperforms neighbor joining by a factor of 10. The application of quartet puzzling to mitochondrial RNA and tRNAVd’ sequences from amniotes demonstrates the power of the approach. A PHYLIP-compatible ANSI C program, PUZZLE, for analyzing nucleotide or amino acid sequence data is available.
Keywords
Related Publications
IQPNNI: Moving Fast Through Tree Space and Stopping in Time
An efficient tree reconstruction method (IQPNNI) is introduced to reconstruct a phylogenetic tree based on DNA or amino acid sequence data. Our approach combines various fast al...
Increasing the Efficiency of Searches for the Maximum Likelihood Tree in a Phylogenetic Analysis of up to 150 Nucleotide Sequences
Even when the maximum likelihood (ML) tree is a better estimate of the true phylogenetic tree than those produced by other methods, the result of a poor ML search may be no bett...
Success of Phylogenetic Methods in the Four-Taxon Case
The success of 16 methods of phylogenetic inference was examined using consistency and simulation analysis. Success—the frequency with which a tree-making method correctly ident...
Median-joining networks for inferring intraspecific phylogenies
Reconstructing phylogenies from intraspecific data (such as human mitochondrial DNA variation) is often a challenging task because of large sample sizes and small genetic distan...
Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree
Abstract Phylogenetic trees from multiple genes can be obtained in two fundamentally different ways. In one, gene sequences are concatenated into a super‐gene alignment, which i...
Publication Info
- Year
- 1996
- Type
- article
- Volume
- 13
- Issue
- 7
- Pages
- 964-969
- Citations
- 2572
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1093/oxfordjournals.molbev.a025664