Abstract
Many things will have to go right for quantum computation to become a reality in the lab. For any of the presently proposed approaches involving spin states in solids, an essential requirement is that these spins should be measured at the single-Bohr-magneton level. Fortunately, quantum computing provides a suggestion for a new approach to this seemingly almost impossible task: convert the magnetization into a charge, and measure the charge. I show how this might be done by exploiting the spin-filter effect provided by ferromagnetic tunnel barriers, used in conjunction with one-electron quantum dots.
Keywords
Affiliated Institutions
Related Publications
Magnetic Effects and the Hartree-Fock Equation
The Hartree-Fock equations state that each electron in an atom or molecular system should move in a different potential. In some cases, particularly magnetic cases, this leads t...
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
The aim of this paper is to advocate the usefulness of the spin-density-functional (SDF) formalism. The generalization of the Hohenberg-Kohn-Sham scheme to and SDF formalism is ...
Publication Info
- Year
- 1999
- Type
- article
- Volume
- 85
- Issue
- 8
- Pages
- 4785-4787
- Citations
- 76
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.370481
- arXiv
- cond-mat/9810295