Proof of completeness of lattice states in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>k</mml:mi><mml:mi/><mml:mi>q</mml:mi></mml:math>representation

1975 Physical review. B, Solid state 127 citations

Abstract

A general set of states on a lattice in the phase plane is considered. The discrete set of von Neumann coherent states for a harmonic oscillator is a particular case of the above set. The $\mathrm{kq}$ representation is used in an elementary proof of completeness and orthogonality of states on a discrete phase plane lattice.

Keywords

Lattice (music)Completeness (order theory)CombinatoricsMathematicsDiscrete mathematicsPhysicsMathematical analysis

Affiliated Institutions

Related Publications

Optical Coherence and Quantum Optics

This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different st...

1995 Cambridge University Press eBooks 8070 citations

Publication Info

Year
1975
Type
article
Volume
12
Issue
4
Pages
1118-1120
Citations
127
Access
Closed

External Links

Citation Metrics

127
OpenAlex

Cite This

H. Bacry, A. Großmann, J. Žák (1975). Proof of completeness of lattice states in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>k</mml:mi><mml:mi/><mml:mi>q</mml:mi></mml:math>representation. Physical review. B, Solid state , 12 (4) , 1118-1120. https://doi.org/10.1103/physrevb.12.1118

Identifiers

DOI
10.1103/physrevb.12.1118