Abstract
A general set of states on a lattice in the phase plane is considered. The discrete set of von Neumann coherent states for a harmonic oscillator is a particular case of the above set. The $\mathrm{kq}$ representation is used in an elementary proof of completeness and orthogonality of states on a discrete phase plane lattice.
Keywords
Affiliated Institutions
Related Publications
Bargmann transform, Zak transform, and coherent states
It is well known that completeness properties of sets of coherent states associated with lattices in the phase plane can be proved by using the Bargmann representation or by usi...
Asymmetric Metasurfaces with High-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math> Resonances Governed by Bound States in the Continuum
We reveal that metasurfaces created by seemingly different lattices of (dielectric or metallic) meta-atoms with broken in-plane symmetry can support sharp high-Q resonances aris...
Optical Coherence and Quantum Optics
This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different st...
Domain Walls in Antiferromagnets and the Weak Ferromagnetism of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>α</mml:mi></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
At the N\'eel temperature local nucleations of the antiferromagnetic order and their subsequent growth lead to the formation of domain walls. The domains in an antiferromagnet a...
Painless nonorthogonal expansions
In a Hilbert space ℋ, discrete families of vectors {hj} with the property that f=∑j〈hj‖ f〉hj for every f in ℋ are considered. This expansion formula is obviously true if the fam...
Publication Info
- Year
- 1975
- Type
- article
- Volume
- 12
- Issue
- 4
- Pages
- 1118-1120
- Citations
- 127
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.12.1118