Abstract
Applying the projector augmented-wave (PAW) method to relativistic spin-density functional theory (RSDFT) we derive PAW Dirac-Kohn-Sham equations for four-component spinor pseudo-wave-functions. The PAW freedom to add a vanishing operator inside the PAW spheres allows us to transform these PAW Dirac-type equations into PAW Pauli-type equations for two-component spinor pseudo-wave-functions. With these wave functions, we get the frozen-core energy as well as the charge and magnetization densities of RSDFT, with errors comparable to the largest between $1/{c}^{2}$ and the transferability error of the PAW data sets. Presently, the latter limits the accuracy of the calculations, not the use of the Pauli-type equations. The theory is validated by applications to isolated atoms of Fe, Pt, and Au, and to the band structure of fcc-Pt, fcc-Au, and ferromagnetic bcc-Fe.
Keywords
Affiliated Institutions
Related Publications
Projector augmented wave method with spin-orbit coupling: Applications to simple solids and zincblende-type semiconductors
Using the fully relativistic projector augmented wave (PAW) approach, we address the relevance of spin-orbit coupling for the structural properties of several solids. Results av...
From ultrasoft pseudopotentials to the projector augmented-wave method
The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energ...
Improved Pauli Hamiltonian for local-potential problems
A recently published scheme for obtaining an approximate solution of the Dirac-Hartree-Fock equations for an atom is adapted and applied to the related Dirac-Slater problem. For...
Approximate relativistic corrections to atomic radial wave functions*
The mass-velocity and Darwin terms of the one-electron-atom Pauli equation have been added to the Hartree-Fock differential equations by using the HX formula to calculate a loca...
Relativistic effects in <i>a</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potential studies of heavy metal compounds. Application to HgCl2, AuCl, and PtH
A method is described for obtaining l-dependent relativistic effective core potentials (ECPs) from Dirac–Fock self-consistent field atomic wave functions. These potentials are d...
Publication Info
- Year
- 2010
- Type
- article
- Volume
- 82
- Issue
- 7
- Citations
- 104
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.82.075116