Abstract
Abstract Principal component analysis (PCA) is a multivariate technique that analyzes a data table in which observations are described by several inter‐correlated quantitative dependent variables. Its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and to display the pattern of similarity of the observations and of the variables as points in maps. The quality of the PCA model can be evaluated using cross‐validation techniques such as the bootstrap and the jackknife. PCA can be generalized as correspondence analysis (CA) in order to handle qualitative variables and as multiple factor analysis (MFA) in order to handle heterogeneous sets of variables. Mathematically, PCA depends upon the eigen‐decomposition of positive semi‐definite matrices and upon the singular value decomposition (SVD) of rectangular matrices. Copyright © 2010 John Wiley & Sons, Inc. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Multivariate Analysis Statistical and Graphical Methods of Data Analysis > Dimension Reduction
Keywords
Affiliated Institutions
Related Publications
Cross-Validatory Choice of the Number of Components From a Principal Component Analysis
A method is described for choosing the number of components to retain in a principal component analysis when the aim is dimensionality reduction. The correspondence between prin...
Partial least squares regression and projection on latent structure regression (PLS Regression)
Abstract Partial least squares (PLS) regression ( a.k.a. projection on latent structures) is a recent technique that combines features from and generalizes principal component a...
Introduction to Multivariate Analysis
Part One. Multivariate distributions. Preliminary data analysis. Part Two: Finding new underlying variables. Principal component analysis. Factor analysis. Part Three: Procedure...
Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches
Approaches to determining the number of components to interpret from principal components analysis were compared. Heuristic procedures included: retaining components with eigenv...
Tensor Decompositions and Applications
This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or N-way array. Decompositions...
Publication Info
- Year
- 2010
- Type
- review
- Volume
- 2
- Issue
- 4
- Pages
- 433-459
- Citations
- 9554
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/wics.101