Abstract

Three-dimensional (3D) printing enables accurate implant pre-shaping in orbital reconstruction but is costly and time-consuming. Naked-eye stereoscopic displays (NEDs) enable virtual implant modeling without fabrication. This study aimed to compare the reproducibility and accuracy of NED-based virtual reality (VR) pre-shaping with conventional 3D-printed models. Two surgeons pre-shaped implants for 11 unilateral orbital floor fractures using both 3D-printed and NED-based VR models with identical computed tomography data. The depth, area, and axis dimensions were measured, and reproducibility and agreement were assessed using intraclass correlation coefficients (ICCs), Bland–Altman analysis, and shape similarity metrics—Hausdorff distance (HD) and root mean square error (RMSE). Intra-rater ICCs were ≥0.80 for all parameters except depth in the VR model. The HD and RMSE reveal no significant differences between 3D (2.64 ± 0.85 mm; 1.02 ± 0.42 mm) and VR (3.14 ± 1.18 mm; 1.24 ± 0.53 mm). Inter-rater ICCs were ≥0.80 for the area and axes in both modalities, while depth remained low. Between modalities, no significant differences were found; HD and RMSE were 2.95 ± 0.94 mm and 1.28 ± 0.49 mm. The NED-based VR pre-shaping achieved reproducibility and dimensional agreement comparable to 3D printing, suggesting a feasible cost- and time-efficient alternative for orbital reconstruction. These preliminary findings suggest that NED-based preshaping may be feasible; however, larger studies are required to confirm whether VR can achieve performance comparable to 3D-printed models.

Affiliated Institutions

Related Publications

Publication Info

Year
2025
Type
article
Volume
15
Issue
24
Pages
12963-12963
Citations
0
Access
Closed

External Links

Citation Metrics

0
OpenAlex

Cite This

Masato Tsuchiya, Izumi Yasutake, S. Tamura et al. (2025). Preliminary Study on the Accuracy Comparison Between 3D-Printed Bone Models and Naked-Eye Stereoscopy-Based Virtual Reality Models for Presurgical Molding in Orbital Floor Fracture Repair. Applied Sciences , 15 (24) , 12963-12963. https://doi.org/10.3390/app152412963

Identifiers

DOI
10.3390/app152412963