Abstract

Literature data on compounds both well- and poorly-absorbed in humans were used to build a statistical pattern recognition model of passive intestinal absorption. Robust outlier detection was utilized to analyze the well-absorbed compounds, some of which were intermingled with the poorly-absorbed compounds in the model space. Outliers were identified as being actively transported. The descriptors chosen for inclusion in the model were PSA and AlogP98, based on consideration of the physical processes involved in membrane permeability and the interrelationships and redundancies between available descriptors. These descriptors are quite straightforward for a medicinal chemist to interpret, enhancing the utility of the model. Molecular weight, while often used in passive absorption models, was shown to be superfluous, as it is already a component of both PSA and AlogP98. Extensive validation of the model on hundreds of known orally delivered drugs, "drug-like" molecules, and Pharmacopeia, Inc. compounds, which had been assayed for Caco-2 cell permeability, demonstrated a good rate of successful predictions (74-92%, depending on the dataset and exact criterion used).

Keywords

OutlierChemistryMolecular descriptorMembrane permeabilityBiological systemPermeability (electromagnetism)Multivariate statisticsAbsorption (acoustics)Chemical spaceMembraneDrug discoveryStatisticsQuantitative structure–activity relationshipArtificial intelligenceMachine learningComputer scienceStereochemistryMathematicsBiochemistry

Affiliated Institutions

Related Publications

Publication Info

Year
2000
Type
article
Volume
43
Issue
21
Pages
3867-3877
Citations
1810
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1810
OpenAlex

Cite This

William J. Egan, Kenneth M. Merz, John J. Baldwin (2000). Prediction of Drug Absorption Using Multivariate Statistics. Journal of Medicinal Chemistry , 43 (21) , 3867-3877. https://doi.org/10.1021/jm000292e

Identifiers

DOI
10.1021/jm000292e