Abstract
Abstract Mixtures of normals provide a flexible model for estimating densities in a Bayesian framework. There are some difficulties with this model, however. First, standard reference priors yield improper posteriors. Second, the posterior for the number of components in the mixture is not well defined (if the reference prior is used). Third, posterior simulation does not provide a direct estimate of the posterior for the number of components. We present some practical methods for coping with these problems. Finally, we give some results on the consistency of the method when the maximum number of components is allowed to grow with the sample size.
Keywords
Affiliated Institutions
Related Publications
CODA: convergence diagnosis and output analysis for MCMC
[1st paragraph] At first sight, Bayesian inference with Markov Chain Monte Carlo (MCMC) appears to be straightforward. The user defines a full probability model, perhaps using o...
Inference from Iterative Simulation Using Multiple Sequences
The Gibbs sampler, the algorithm of Metropolis and similar iterative simulation methods are potentially very helpful for summarizing multivariate distributions. Used naively, ho...
Wald Lecture: On the Bernstein-von Mises theorem with infinite-dimensional parameters
If there are many independent, identically distributed\nobservations governed by a smooth, finite-dimensional statistical model, the\nBayes estimate and the maximum likelihood e...
Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study
Abstract Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, ...
Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm
Summary. This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables...
Publication Info
- Year
- 1997
- Type
- article
- Volume
- 92
- Issue
- 439
- Pages
- 894-902
- Citations
- 473
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1080/01621459.1997.10474044