Keywords

Partial differential equationNonlinear systemArtificial neural networkContext (archaeology)Inverse problemPartial derivativeComputer scienceAutomatic differentiationApplied mathematicsPhysical lawMathematicsArtificial intelligenceAlgorithmMathematical analysisPhysics

Affiliated Institutions

Related Publications

Publication Info

Year
2018
Type
article
Volume
378
Pages
686-707
Citations
12848
Access
Closed

Citation Metrics

12848
OpenAlex
916
Influential
11595
CrossRef

Cite This

Maziar Raissi, Paris Perdikaris, George Em Karniadakis (2018). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics , 378 , 686-707. https://doi.org/10.1016/j.jcp.2018.10.045

Identifiers

DOI
10.1016/j.jcp.2018.10.045

Data Quality

Data completeness: 72%