Abstract
Abstract A central question in biology is how biodiversity influences ecosystem functioning. Underlying this is the relationship between organismal phylogeny and the presence of specific functional traits. The relationship is complicated by gene loss and convergent evolution, resulting in the polyphyletic distribution of many traits. In microorganisms, lateral gene transfer can further distort the linkage between phylogeny and the presence of specific functional traits. To identify the phylogenetic conservation of specific traits in microorganisms, we developed a new phylogenetic metric—consenTRAIT—to estimate the clade depth where organisms share a trait. We then analyzed the distribution of 89 functional traits across a broad range of Bacteria and Archaea using genotypic and phenotypic data. A total of 93% of the traits were significantly non-randomly distributed, which suggested that vertical inheritance was generally important for the phylogenetic dispersion of functional traits in microorganisms. Further, traits in microbes were associated with a continuum of trait depths (τD), ranging from a few deep to many shallow clades (average τD: 0.101–0.0011 rRNA sequence dissimilarity). Next, we demonstrated that the dispersion and the depth of clades that contain a trait is correlated with the trait’s complexity. Specifically, complex traits encoded by many genes like photosynthesis and methanogenesis were found in a few deep clusters, whereas the ability to use simple carbon substrates was highly phylogenetically dispersed. On the basis of these results, we propose a framework for predicting the phylogenetic conservatism of functional traits depending on the complexity of the trait. This framework enables predicting how variation in microbial composition may affect microbially-mediated ecosystem processes as well as linking phylogenetic and trait-based patterns of biogeography.
Keywords
MeSH Terms
Affiliated Institutions
Related Publications
Phylogenetic divergence in leatherside chub (<i>Gila copei</i>) inferred from mitochondrial cytochrome <i>b</i> sequences
Abstract We examined intra‐specific phylogenetic relationships in leatherside chub, Gila copei . The complete mitochondrial (mt) cytochrome b gene (1140 bp) was sequenced for 30...
The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria.
Variable regions of the 16s ribosomal RNA have been frequently used as the target for DNA probes to identify microorganisms. In some situations, however, there is very little se...
Structure and History of African Elephant Populations: I. Eastern and Southern Africa
Patterns of restriction site variation within mitochondrial DNA (mtDNA) of 270 individuals were used to examine the current structure of savanna elephant populations and to infe...
Calculating statistical power in Mendelian randomization studies
In Mendelian randomization (MR) studies, where genetic variants are used as proxy measures for an exposure trait of interest, obtaining adequate statistical power is frequently ...
Empirical threshold values for quantitative trait mapping.
Abstract The detection of genes that control quantitative characters is a problem of great interest to the genetic mapping community. Methods for locating these quantitative tra...
Publication Info
- Year
- 2012
- Type
- article
- Volume
- 7
- Issue
- 4
- Pages
- 830-838
- Citations
- 581
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1038/ismej.2012.160
- PMID
- 23235290
- PMCID
- PMC3603392