Abstract

Graph structures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low-dimensional space using a number of alternative strategies, including principal components analysis (PCA), multidimensional scaling (MDS), and locality preserving projection (LPP). Experimentally, we demonstrate that the embeddings result in well-defined graph clusters. Our experiments with the spectral representation involve both synthetic and real-world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real-world experiments show that the method can be used to locate clusters of graphs.

Keywords

Spectral graph theoryLaplacian matrixModular decompositionMathematicsAlgebraic connectivityAlgebraic graph theoryPattern recognition (psychology)Graph theoryComputer scienceGraphArtificial intelligenceCombinatoricsLine graphPathwidthVoltage graph

Affiliated Institutions

Related Publications

Chemical Graph Theory

INTRODUCTION. ELEMENTS OF GRAPH THEORY. The Definition of a Graph. Isomorphic Graphs and Graph Automorphism. Walks, Trails, Paths, Distances and Valencies in Graphs. Subgraphs. ...

2018 1459 citations

Publication Info

Year
2005
Type
article
Volume
27
Issue
7
Pages
1112-1124
Citations
218
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

218
OpenAlex

Cite This

Richard C. Wilson, Edwin R. Hancock, Bin Luo (2005). Pattern vectors from algebraic graph theory. IEEE Transactions on Pattern Analysis and Machine Intelligence , 27 (7) , 1112-1124. https://doi.org/10.1109/tpami.2005.145

Identifiers

DOI
10.1109/tpami.2005.145