Abstract
Given a dictionary D = { d k } of vectors d k , we seek to represent a signal S as a linear combination S = ∑ k γ( k ) d k , with scalar coefficients γ ( k ). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered the special case where D is an overcomplete system consisting of exactly two orthobases and has shown that, under a condition of mutual incoherence of the two bases, and assuming that S has a sufficiently sparse representation, this representation is unique and can be found by solving a convex optimization problem: specifically, minimizing the ℓ 1 norm of the coefficients γ̱. In this article, we obtain parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems. We sketch three applications: separating linear features from planar ones in 3D data, noncooperative multiuser encoding, and identification of over-complete independent component models.
Keywords
Affiliated Institutions
Related Publications
Uncertainty principles and ideal atomic decomposition
Suppose a discrete-time signal S(t), 0/spl les/t<N, is a superposition of atoms taken from a combined time-frequency dictionary made of spike sequences 1/sub {t=/spl tau/}/ and ...
Sparsity and incoherence in compressive sampling
We consider the problem of reconstructing a sparse signal x^0\\in{\\bb R}^n from a limited number of linear measurements. Given m randomly selected samples of Ux0, where U is an...
Image Super-Resolution Via Sparse Representation
This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-...
Regularization Paths for Generalized Linear Models via Coordinate Descent
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multi- nom...
Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
Suppose we are given a vector f in a class F ⊂ ℝN, e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to reco...
Publication Info
- Year
- 2003
- Type
- article
- Volume
- 100
- Issue
- 5
- Pages
- 2197-2202
- Citations
- 2887
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1073/pnas.0437847100