Abstract

We extend previous work on applying the epsilon-expansion to universal\nproperties of a cold, dilute Fermi gas in the unitary regime of infinite\nscattering length. We compute the ratio xi = mu/epsilon_F of chemical potential\nto ideal gas Fermi energy to next-to-next-to-leading order (NNLO) in\nepsilon=4-d, where d is the number of spatial dimensions. We also explore the\nnature of corrections from the order after NNLO.\n

Keywords

Order (exchange)Unitary stateEnergy (signal processing)PhysicsAlgorithmMathematicsQuantum mechanics

Affiliated Institutions

Related Publications

Dynamic spin fluctuations and the bag mechanism of high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>superconductivity

The spin-bag approach to the high-temperature superconductivity is presented in detail. The general argument that the local supression of the electronic pseudogap leads to an at...

1989 Physical review. B, Condensed matter 680 citations

Tendency towards Local Spin Compensation of Holes in the High-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>Copper Compounds

Using an Anderson impurity description of the high-Tc superconductors, we study the character of the states closest to the Fermi level. In a kind of phase diagram involving the ...

1988 Physical Review Letters 356 citations

Publication Info

Year
2007
Type
article
Volume
75
Issue
4
Citations
47
Access
Closed

External Links

Citation Metrics

47
OpenAlex

Cite This

Peter Arnold, Joaquín E. Drut, D. Son (2007). Next-to-next-to-leading-order<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>ϵ</mml:mi></mml:mrow></mml:math>expansion for a Fermi gas at infinite scattering length. Physical Review A , 75 (4) . https://doi.org/10.1103/physreva.75.043605

Identifiers

DOI
10.1103/physreva.75.043605