Abstract

The list of primitive binary trinomials with a degree equal to a Mersenne exponent is extended. The newly found primitive trinomials have a degree equal to the 29th and 30th Mersenne exponent. These trinomials enable the construction of new, high-performance random-number generators for use in large-scale Monte Carlo simulations.

Keywords

TrinomialMersenne primeExponentMathematicsDegree (music)Random number generationDiscrete mathematicsAlgorithmPhysics

Affiliated Institutions

Related Publications

Publication Info

Year
1992
Type
article
Volume
03
Issue
03
Pages
561-564
Citations
38
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

38
OpenAlex

Cite This

Jouke R. Heringa, Henk W. J. Blöte, A. Compagner (1992). NEW PRIMITIVE TRINOMIALS OF MERSENNE-EXPONENT DEGREES FOR RANDOM-NUMBER GENERATION. International Journal of Modern Physics C , 03 (03) , 561-564. https://doi.org/10.1142/s0129183192000361

Identifiers

DOI
10.1142/s0129183192000361