Abstract
The theory of indirect exchange in poor conductors is examined from a new viewpoint in which the $d$ (or $f$) shell electrons are placed in wave functions assumed to be exact solutions of the problem of a single $d$-electron in the presence of the full diamagnetic lattice. Inclusion of $d$-electron interactions leads to three spin-dependent effects which, in the usual order of their sizes, we call: superexchange per se, which is always antiferromagnetic; direct exchange, always ferromagnetic; and an indirect polarization effect analogous to nuclear indirect exchange. Superexchange itself is shown to be closely related to the poor conductivity, in agreement with experiment. By means of crystal field theory the parameters determining superexchange can be estimated, and in favorable cases (NiO, LaFe${\mathrm{O}}_{3}$) the exchange integrals can be evaluated with accuracy of several tens of percent. Qualitative understanding of the whole picture of exchange in iron group oxides and fluorides follows from these ideas.
Keywords
Related Publications
Low-temperature properties of the one-dimensional polaron band. I. Extreme-band-narrowing regime
We consider a narrow one-dimensional tight-binding chain with intra-atomic Coulomb repulsions described in the Hubbard model. The electrons at each site are furthermore assumed ...
Antiferromagnetic Properties of the Iron Group Trifluorides
A neutron diffraction study has been made of the trifluorides of $3d$ transition group elements. The arrangement of the magnetic ions and the anions in these trifluorides is sim...
Theory of the Residual Resistivity of Bloch Walls I. Paramagnetic Effects
Abstract The contribution of Bloch‐wall electron‐scattering to the electrical resistivity of a ferromagnetic metal is calculated. Calculations are carried out for various cases ...
Susceptibility Measurements Support High- <i>T</i> <sub>c</sub> Superconductivity in the Ba-La-Cu-O System
The magnetic susceptibility of ceramic samples in the metallic BaLaCuO system has been measured as a function of temperature. This system had earlier shown characteristic sharp ...
Bulk superconductivity at 36 K in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>1.8</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Sr</mml:mi></mml:mrow><mml:mrow><mml:mn>0.2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
We report the results of resistivity and magnetic susceptibility measurements in ${\mathrm{La}}_{2\mathrm{\ensuremath{-}}\mathrm{x}}$${\mathrm{Sr}}_{\mathrm{x}}$${\mathrm{CuO}}_...
Publication Info
- Year
- 1959
- Type
- article
- Volume
- 115
- Issue
- 1
- Pages
- 2-13
- Citations
- 2502
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrev.115.2