Abstract
Abstract This book provides the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts of pattern recognition, the book describes techniques for modelling probability density functions, and discusses the properties and relative merits of the multi-layer perceptron and radial basis function network models. It also motivates the use of various forms of error functions, and reviews the principal algorithms for error function minimization. As well as providing a detailed discussion of learning and generalization in neural networks, the book also covers the important topics of data processing, feature extraction, and prior knowledge. The book concludes with an extensive treatment of Bayesian techniques and their applications to neural networks.
Keywords
Affiliated Institutions
Related Publications
Network In Network
Abstract: We propose a novel deep network structure called In Network (NIN) to enhance model discriminability for local patches within the receptive field. The conventional con...
Backpropagation training for multilayer conditional random field based phone recognition
Conditional random fields (CRFs) have recently found increased popularity in automatic speech recognition (ASR) applications. CRFs have previously been shown to be effective com...
Representation Learning: A Review and New Perspectives
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more...
Comparing multilayer perceptron to Deep Belief Network Tandem features for robust ASR
In this paper, we extend the work done on integrating multilayer perceptron (MLP) networks with HMM systems via the Tandem approach. In particular, we explore whether the use of...
Sparse Multilayer Perceptron for Phoneme Recognition
This paper introduces the sparse multilayer perceptron (SMLP) which jointly learns a sparse feature representation and nonlinear classifier boundaries to optimally discriminate ...
Publication Info
- Year
- 1995
- Type
- book
- Citations
- 12030
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1093/oso/9780198538493.001.0001