Abstract

Visual arts education has been linked to cognitive and neural benefits, yet the neural mechanisms associated with creativity remain unclear. This study examined how long-term engagement in design-related visual arts education relates to creative performance and brain function. Using a quasi-experimental design with propensity score matching, we compared design majors to matched non-design majors. Participants completed visual art creative tasks (product and book cover design) and divergent thinking tasks (AUT, TTCT-figural) during fNIRS recording. The design group outperformed peers across tasks and showed greater left dorsolateral prefrontal activation during early idea generation, while non-design peers relied more on sensory and motor regions. Functional connectivity revealed reduced coupling within task-relevant circuits, indicating greater neural efficiency. Dynamic network analysis showed design majors spent more time in efficient states and switched between states more flexibly. These findings suggest that design-related visual arts education may support creativity through efficient and flexible brain network engagement.

Affiliated Institutions

Related Publications

Publication Info

Year
2025
Type
article
Citations
0
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

0
OpenAlex

Cite This

Jing Teng, Xinuo Qiao, Kelong Lu et al. (2025). Neural mechanisms underpinning the association between visual arts education and creativity. npj Science of Learning . https://doi.org/10.1038/s41539-025-00388-1

Identifiers

DOI
10.1038/s41539-025-00388-1