Abstract
Suppose we are given a vector f in a class F ⊂ ℝN, e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to recover f to within precision ε in the Euclidean (ℓ2) metric? This paper shows that if the objects of interest are sparse in a fixed basis or compressible, then it is possible to reconstruct f to within very high accuracy from a small number of random measurements by solving a simple linear program. More precisely, suppose that the nth largest entry of the vector |f| (or of its coefficients in a fixed basis) obeys |f|(n) ≤ R n^(1-p), where R > 0 and p > 0. Suppose that we take measurements yk = {f,Xk}, k = 1, . . .,K, where the Xk are N-dimensional Gaussian vectors with independent standard normal entries. Then for each f obeying the decay estimate above for some 0 < p < 1 and with overwhelming probability, our reconstruction f#, defined as the solution to the constraints yk = 〈f#, Xk〉 with minimal ℓ1 norm, obeys [equation]. \n \nThere is a sense in which this result is optimal; it is generally impossible to obtain a higher accuracy from any set of K measurements whatsoever. The methodology extends to various other random measurement ensembles; for example, we show that similar results hold if one observes a few randomly sampled Fourier coefficients of f. In fact, the results are quite general and require only two hypotheses on the measurement ensemble which are detailed.
Keywords
Affiliated Institutions
Related Publications
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f ∈ C N and a randomly chosen set of freque...
Compressed sensing
Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible ...
Compressed sensing
Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...
Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements
This paper proves best known guarantees for exact reconstruction of a sparse signal f from few non-adaptive universal linear measurements. We consider Fourier measurements (rand...
Sparsity and incoherence in compressive sampling
We consider the problem of reconstructing a sparse signal x^0\\in{\\bb R}^n from a limited number of linear measurements. Given m randomly selected samples of Ux0, where U is an...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 52
- Issue
- 12
- Pages
- 5406-5425
- Citations
- 6819
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tit.2006.885507