Abstract

Suppose we are given a vector f in a class F ⊂ ℝN, e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to recover f to within precision ε in the Euclidean (ℓ2) metric? This paper shows that if the objects of interest are sparse in a fixed basis or compressible, then it is possible to reconstruct f to within very high accuracy from a small number of random measurements by solving a simple linear program. More precisely, suppose that the nth largest entry of the vector |f| (or of its coefficients in a fixed basis) obeys |f|(n) ≤ R n^(1-p), where R > 0 and p > 0. Suppose that we take measurements yk = {f,Xk}, k = 1, . . .,K, where the Xk are N-dimensional Gaussian vectors with independent standard normal entries. Then for each f obeying the decay estimate above for some 0 < p < 1 and with overwhelming probability, our reconstruction f#, defined as the solution to the constraints yk = 〈f#, Xk〉 with minimal ℓ1 norm, obeys [equation]. 
\n
\nThere is a sense in which this result is optimal; it is generally impossible to obtain a higher accuracy from any set of K measurements whatsoever. The methodology extends to various other random measurement ensembles; for example, we show that similar results hold if one observes a few randomly sampled Fourier coefficients of f. In fact, the results are quite general and require only two hypotheses on the measurement ensemble which are detailed.

Keywords

Emphasis (telecommunications)MathematicsCombinatoricsComputer scienceTelecommunications

Affiliated Institutions

Related Publications

Compressed sensing

Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible ...

2004 17126 citations

Compressed sensing

Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...

2006 IEEE Transactions on Information Theory 22524 citations

Publication Info

Year
2006
Type
article
Volume
52
Issue
12
Pages
5406-5425
Citations
6819
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

6819
OpenAlex

Cite This

Emmanuel J. Candès, Terence Tao (2006). Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?. IEEE Transactions on Information Theory , 52 (12) , 5406-5425. https://doi.org/10.1109/tit.2006.885507

Identifiers

DOI
10.1109/tit.2006.885507