Abstract
In this paper we examine the effect of solvent on the optical extinction spectrum of periodic arrays of surface-confined silver nanoparticles fabricated by nanosphere lithography (NSL). By use of NSL, it is possible to systematically vary the out-of-plane height of the nanoparticles, and by thermal annealing, we can control the nanoparticle shape. We have studied four separate samples of nanoparticle arrays; three samples have nanoparticles that are truncated tetrahedral in shape but that differ in out-of-plane height and one sample has nanoparticles that are oblate ellipsoidal in shape. By performing UV−vis extinction spectroscopy measurements at 12 μm spatial resolution, we show that the defect sites that occur as a byproduct of the NSL fabrication process play a negligible role in the macroscale extinction spectrum. We find that the extinction spectrum of the nanoparticles that are oblate ellipsoidal in shape is least sensitive to the surrounding dielectric medium, and the extinction spectrum of the nanoparticles that are truncated tetrahedral in shape with the smallest out-of-plane height is most sensitive. A 1 nm shift in the extinction maximum corresponds to a 0.005 change in the refractive index of the external medium. Theoretical calculations based on the discrete dipole approximation (DDA) are presented. The DDA is a coupled finite element method capable of calculating the extinction of light for particles of arbitrary shape and size. The discrepancy between the experimental and theoretical results is small for the oblate ellipsoidal-shaped particle but progressively increases for the truncated tetrahedral-shaped particles as they become more oblate. This discrepancy is lessened by including the effect of substrate−particle interactions in the calculation. The DDA theory predicts a significantly larger red shift in the extinction maximum with increasing solvent refractive index than is observed experimentally.
Keywords
Affiliated Institutions
Related Publications
Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles
In this paper, we explore the optical contributions of the substrate to the localized surface plasmon resonance (LSPR) spectrum of surface confined Ag nanoparticles produced by ...
Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling
In this paper we measure the optical extinction spectrum of a periodic array of silver nanoparticles fabricated by nanosphere lithography (NSL) and present detailed comparisons ...
Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers
In this paper, we explore the optical properties of Ag nanoparticles chemically modified with alkanethiol self-assembled monolayers (SAMs) by measuring the localized surface pla...
Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids
In order to understand more deeply the surface enhanced Raman scattering (SERS) effect, this article develops a model, based upon the simulation of the UV–visible extinction spe...
The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment
The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. Mor...
Publication Info
- Year
- 1999
- Type
- article
- Volume
- 103
- Issue
- 45
- Pages
- 9846-9853
- Citations
- 528
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/jp9926802