Abstract
A multiresolution approximation is a sequence of embedded vector spaces <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis bold upper V Subscript j Baseline right-parenthesis Subscript j element-of z"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">V</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> <mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>j</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>z</mml:mtext> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{({{\mathbf {V}}_j})_{j \in {\text {z}}}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for approximating <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper L squared left-parenthesis bold upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">L</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {L}}^2}({\mathbf {R}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> functions. We study the properties of a multiresolution approximation and prove that it is characterized by a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 pi"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>π<!-- π --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-periodic function which is further described. From any multiresolution approximation, we can derive a function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="psi left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\psi (x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> called a wavelet such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis StartRoot 2 Superscript j Baseline EndRoot psi left-parenthesis 2 Superscript j Baseline x minus k right-parenthesis right-parenthesis Subscript left-parenthesis k comma j right-parenthesis element-of z squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:msqrt> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>j</mml:mi> </mml:msup> </mml:mrow> </mml:msqrt> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>j</mml:mi> </mml:msup> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>j</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>z</mml:mtext> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{(\sqrt {{2^j}} \psi ({2^j}x - k))_{(k,j) \in {{\text {z}}^2}}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an orthonormal basis of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper L squared left-parenthesis bold upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">L</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {L}}^2}({\mathbf {R}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This provides a new approach for understanding and computing wavelet orthonormal bases. Finally, we characterize the asymptotic decay rate of multiresolution approximation errors for functions in a Sobolev space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper H Superscript s"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">H</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {H}}^s}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Keywords
Affiliated Institutions
Related Publications
On the probability that a random ±1-matrix is singular
We report some progress on the old problem of estimating the probability, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" al...
Entropy for group endomorphisms and homogeneous spaces
Topological entropy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h Subscript d Baseline left-parenthesis upper T...
A Monte Carlo factoring algorithm with linear storage
We present an algorithm which will factor an integer <italic>n</italic> quite efficiently if the class number <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="ht...
A rigorous time bound for factoring integers
In this paper a probabilistic algorithm is exhibited that factors any positive integer<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math...
Structure diagrams for primitive Boolean algebras
If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation enc...
Publication Info
- Year
- 1989
- Type
- article
- Volume
- 315
- Issue
- 1
- Pages
- 69-87
- Citations
- 2101
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1090/s0002-9947-1989-1008470-5