Abstract
Conventional pattern-mixture models can be highly sensitive to model misspecification. In many longitudinal studies, where the nature of the drop-out and the form of the population model are unknown, interval estimates from any single pattern-mixture model may suffer from undercoverage, because uncertainty about model misspecification is not taken into account. In this article, a new class of Bayesian random coefficient pattern-mixture models is developed to address potentially non-ignorable drop-out. Instead of imposing hard equality constraints to overcome inherent inestimability problems in pattern-mixture models, we propose to smooth the polynomial coefficient estimates across patterns using a hierarchical Bayesian model that allows random variation across groups. Using real and simulated data, we show that multiple imputation under a three-level linear mixed-effects model which accommodates a random level due to drop-out groups can be an effective method to deal with non-ignorable drop-out by allowing model uncertainty to be incorporated into the imputation process.
Keywords
Affiliated Institutions
Related Publications
On the performance of random‐coefficient pattern‐mixture models for non‐ignorable drop‐out
Abstract Random‐coefficient pattern‐mixture models (RCPMMs) have been proposed for longitudinal data when drop‐out is thought to be non‐ignorable. An RCPMM is a random‐effects m...
Multiple Imputation for Nonresponse in Surveys
Tables and Figures. Glossary. 1. Introduction. 1.1 Overview. 1.2 Examples of Surveys with Nonresponse. 1.3 Properly Handling Nonresponse. 1.4 Single Imputation. 1.5 Multiple Imp...
Applied Missing Data Analysis
Part 1. An Introduction to Missing Data. 1.1 Introduction. 1.2 Chapter Overview. 1.3 Missing Data Patterns. 1.4 A Conceptual Overview of Missing Data heory. 1.5 A More Formal De...
Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm
Summary. This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables...
Bayesian Density Estimation and Inference Using Mixtures
Abstract We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density ...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 24
- Issue
- 15
- Pages
- 2345-2363
- Citations
- 55
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/sim.2117