Abstract

Unsupervised image-to-image translation is an important and challenging problem in computer vision. Given an image in the source domain, the goal is to learn the conditional distribution of corresponding images in the target domain, without seeing any pairs of corresponding images. While this conditional distribution is inherently multimodal, existing approaches make an overly simplified assumption, modeling it as a deterministic one-to-one mapping. As a result, they fail to generate diverse outputs from a given source domain image. To address this limitation, we propose a Multimodal Unsupervised Image-to-image Translation (MUNIT) framework. We assume that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties. To translate an image to another domain, we recombine its content code with a random style code sampled from the style space of the target domain. We analyze the proposed framework and establish several theoretical results. Extensive experiments with comparisons to the state-of-the-art approaches further demonstrates the advantage of the proposed framework. Moreover, our framework allows users to control the style of translation outputs by providing an example style image. Code and pretrained models are available at this https URL

Keywords

Computer scienceImage translationImage (mathematics)Code (set theory)Domain (mathematical analysis)Artificial intelligenceTranslation (biology)Source codePattern recognition (psychology)Computer visionTheoretical computer scienceMathematicsProgramming language

Affiliated Institutions

Related Publications

Publication Info

Year
2018
Type
book-chapter
Pages
179-196
Citations
2457
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

2457
OpenAlex
488
Influential

Cite This

Xun Huang, Ming-Yu Liu, Serge Belongie et al. (2018). Multimodal Unsupervised Image-to-Image Translation. Lecture notes in computer science , 179-196. https://doi.org/10.1007/978-3-030-01219-9_11

Identifiers

DOI
10.1007/978-3-030-01219-9_11
PMID
41377025
PMCID
PMC12686293
arXiv
1804.04732

Data Quality

Data completeness: 79%