Abstract
A generalization of the sampling method introduced by Metropolis et al. (1953) is presented along with an exposition of the relevant theory, techniques of application and methods and difficulties of assessing the error in Monte Carlo estimates. Examples of the methods, including the generation of random orthogonal matrices and potential applications of the methods to numerical problems arising in statistics, are discussed.
Keywords
Affiliated Institutions
Related Publications
Understanding the Metropolis-Hastings Algorithm
Abstract We provide a detailed, introductory exposition of the Metropolis-Hastings algorithm, a powerful Markov chain method to simulate multivariate distributions. A simple, in...
Probabilistic Inference Using Markov Chain Monte Carlo Methods
Probabilistic inference is an attractive approach to uncertain reasoning and empirical learning in artificial intelligence. Computational difficulties arise, however, because pr...
Gibbs Sampling for Bayesian Non-Conjugate and Hierarchical Models by Using Auxiliary Variables
Summary We demonstrate the use of auxiliary (or latent) variables for sampling non-standard densities which arise in the context of the Bayesian analysis of non-conjugate and hi...
Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods
Summary The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Mont...
A Split-Merge Markov chain Monte Carlo Procedure for the Dirichlet Process Mixture Model
This article proposes a split-merge Markov chain algorithm to address the problem of inefficient sampling for conjugate Dirichlet process mixture models. Traditional Markov chai...
Publication Info
- Year
- 1970
- Type
- article
- Volume
- 57
- Issue
- 1
- Pages
- 97-109
- Citations
- 14735
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1093/biomet/57.1.97