Abstract
Recent spectroscopic advances have led to the first determinations of infrared vibration-rotation bands of polyatomic molecular ions. These initial detections were guided by ab initio predictions of the vibrational frequencies. The calculations reported here predict the vibrational frequencies of additional ions which are candidates for laboratory analysis. Vibrational frequencies of neutral molecules computed at three levels of theory, HF/3-21G, HF/6-31G*, and MP2/6-31G*, were compared with experiment and the effect of scaling was investigated to determine how accurately vibrational frequencies could be predicted. For 92% of the frequencies examined, uniformly scaled HF/6-31G* vibrational frequencies were within 100 cm−1 of experiment with a mean absolute error of 49 cm−1. This relatively simple theory thus seems suitable for predicting vibrational frequencies to guide laboratory spectroscopic searches for ions in the infrared. Hence, the frequencies of 30 molecular ions, many with astrochemical significance, were computed. They are CH+2, CH+3, CH+5, NH+2, NH+4, H3O+, H2F+, SiH+2, PH+4, H3S+, H2Cl+, C2H+, classical C2H+3, nonclassical C2H+3, nonclassical C2H+5, HCNH+, H2CNH+2, H3CNH+3, HCO+, HOC+, H2CO+, H2COH+, H3COH+2, H3CFH+, HN+2, HO+2, C3H+, HOCO+, HCS+, and HSiO+.
Keywords
Affiliated Institutions
Related Publications
Scaling Factors for Obtaining Fundamental Vibrational Frequencies and Zero‐Point Energies from HF/6–31G* and MP2/6–31G* Harmonic Frequencies
Abstract New scaling factors have been determined for obtaining fundamental vibrational frequencies and zero‐point vibrational energies from harmonic frequencies calculated at t...
Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors
Scaling factors for obtaining fundamental vibrational frequencies, low-frequency vibrations, zero-point vibrational energies (ZPVE), and thermal contributions to enthalpy and en...
Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements
The 6-31G* and 6-31G** basis sets previously introduced for first-row atoms have been extended through the second-row of the periodic table. Equilibrium geometries for one-heavy...
Integrated spatial electron populations in molecules: Application to simple molecules
Abstract The electron projection function P ( x , z ) = ∫ ρ( x , y , z ) dy is used to evaluate charge transfer and covalency in two series of molecules, LiX and CH 3 X (X = Li,...
Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94
This article describes the parameterization and performance of MMFF94 for molecular geometries and deformations. It defines the form used for the valence-coordinate terms that r...
Publication Info
- Year
- 1985
- Type
- article
- Volume
- 82
- Issue
- 1
- Pages
- 333-341
- Citations
- 392
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.448805