Abstract

A new procedure for generating networks of Si atoms with the properties of amorphous Si is presented. We have used ab initio molecular-dynamics simulations and a simple simulation procedure to produce cells with radial distribution functions, coordination defect concentrations, and vibrational densities of states in excellent agreement with experiment. A comparison of our method is made with other techniques and the conditions under which specific kinds of defects occur in simulations (e.g., floating or dangling bonds) is discussed. Implications to calculations using semiempirical angle-dependent potentials is briefly discussed. We have found that Brillouin-zone sampling significantly affects interatomic forces, and that the final amorphous structures obtained are dependent upon the sampling scheme used.

Keywords

Molecular dynamicsAmorphous solidInteratomic potentialMaterials scienceBrillouin zoneSampling (signal processing)Molecular physicsDangling bondAb initioChemical physicsStatistical physicsComputational chemistryPhysicsSiliconCondensed matter physicsChemistryCrystallographyOpticsQuantum mechanics

Affiliated Institutions

Related Publications

<i>Ab initio</i>lattice dynamics and phase transformations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Zr</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>

Zirconia, $\mathrm{Zr}{\mathrm{O}}_{2}$, is one of the most important ceramic materials in modern technology. Its versatility is closely related to phase transformations. Althou...

2005 Physical Review B 119 citations

Publication Info

Year
1990
Type
article
Volume
42
Issue
8
Pages
5135-5141
Citations
100
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

100
OpenAlex

Cite This

D. A. Drabold, P. A. Fedders, Otto F. Sankey et al. (1990). Molecular-dynamics simulations of amorphous Si. Physical review. B, Condensed matter , 42 (8) , 5135-5141. https://doi.org/10.1103/physrevb.42.5135

Identifiers

DOI
10.1103/physrevb.42.5135