Abstract
Following our previous work [S. Murakami, N. Nagaosa, S. C. Zhang, Science\n301, 1348 (2003)] on the dissipationless quantum spin current, we present an\nexact quantum mechanical calculation of this novel effect based on the linear\nresponse theory and the Kubo formula. We show that it is possibxle to define an\nexactly conserved spin current, even in the presence of the spin-orbit coupling\nin the Luttinger Hamiltonian of p-type semiconductors. The light- and the\nheavy-hole bands form two Kramers doublets, and an SU(2) non-abelian gauge\nfield acts naturally on each of the doublets. This quantum holonomy gives rise\nto a monopole structure in momentum space, whose curvature tensor directly\nleads to the novel dissipationless spin Hall effect, i.e., a transverse spin\ncurrent is generated by an electric field. The result obtained in the current\nwork gives a quantum correction to the spin current obtained in the previous\nsemiclassical approximation.\n
Keywords
Affiliated Institutions
Related Publications
Antiferromagnetic band structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>:</mml:mo></mml:math> Becke-3–Lee-Yang-Parr calculations
Using the Becke-3–Lee-Yang-Parr (B3LYP) functional, we have performed band-structure calculations on the high-temperature superconductor parent compound, La_2CuO_4. Under the re...
Spin-Hall Insulator
Recent theories predict dissipationless spin current induced by an electric field in doped semiconductors. Nevertheless, the charge current is still dissipative in these systems...
Magnetic dynamics of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi mathvariant="normal">−</mml:mi><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ba</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
High-energy inelastic neutron scattering is used to resolve spin waves in ${\mathrm{La}}_{2}$${\mathrm{CuO}}_{4}$. The corresponding long-wavelength velocity is 0.85\ifmmode\pm\...
Electronic structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">WSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. II. The nature of the optical band gaps
From band-structure calculations it is shown that MoSe2, MoS2, and WSe2 are indirect-gap semiconductors. The top of the valence band is at the Γ point and the bottom of the cond...
Quantum Hall states at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mstyle scriptlevel="1"><mml:mfrac bevelled="false"><mml:mn>2</mml:mn><mml:mrow><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mstyle></mml:mrow></mml:math>: Analysis of the particle-hole conjugates of the general level-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>k</mml:mi></mml:math>Read-Rezayi states
We study the nu=(2/(k + 2)) quantum Hall states which are particle-hole conjugates of the nu=(2/(k + 2)) Read-Rezayi states. We find that equilibration between the different mod...
Publication Info
- Year
- 2004
- Type
- article
- Volume
- 69
- Issue
- 23
- Citations
- 336
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.69.235206