Keywords

MinimaxMathematicsUnivariateCombinatoricsBounded functionBall (mathematics)Applied mathematicsMinimax estimatorStatisticsMathematical optimizationEstimatorMathematical analysisMinimum-variance unbiased estimatorMultivariate statistics

Affiliated Institutions

Related Publications

Compressed sensing

Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible ...

2004 17126 citations

Compressed sensing

Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...

2006 IEEE Transactions on Information Theory 22524 citations

Some Observations on Robust Estimation

Abstract Let Tj be a reasonable estimator (for example, a minimum mean square error estimator) of the parameter θ of the family Dj of distributions, j = 1, 2, …, m. An estimator...

1967 Journal of the American Statistical A... 140 citations

Bootstrap Methods: Another Look at the Jackknife

We discuss the following problem: given a random sample $\\mathbf{X} = (X_1, X_2, \\cdots, X_n)$ from an unknown probability distribution $F$, estimate the sampling distribution...

1979 The Annals of Statistics 16966 citations

Publication Info

Year
1994
Type
article
Volume
99
Issue
2
Pages
277-303
Citations
213
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

213
OpenAlex

Cite This

David L. Donoho, Iain M. Johnstone (1994). Minimax risk overl p -balls forl p -error. Probability Theory and Related Fields , 99 (2) , 277-303. https://doi.org/10.1007/bf01199026

Identifiers

DOI
10.1007/bf01199026