Abstract
The energy crisis of the early 1970s stimulated numerous \ninvestigations of semiconductor/liquid junctions for the conversion and storage of solar energy. Although similar in concept to solid-state photovoltaic devices, semiconductor /liquid junctions offered the potential for inexpensive, chemically based energy-conversion devices, with the accompanying potential to effect the direct conversion of light into chemical fuels.
Keywords
Affiliated Institutions
Related Publications
Carbon Nanotubes--the Route Toward Applications
Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; fi...
REVERSIBLE, METASTABLE, ULTRAFAST PHOTOINDUCED ELECTRON TRANSFER FROM SEMICONDUCTING POLYMERS TO BUCKMINSTERFULLERENE AND IN THE CORRESPONDING DONOR/ACCEPTOR HETEROJUNCTIONS
The results of comprehensive studies of photoinduced electron transfer from semiconducting (conjugated) polymers to buckminsterfullerene are reviewed. Steady state and femtoseco...
Perspectives for dye-sensitized nanocrystalline solar cells
The dye-sensitized solar cells (DYSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the c...
Dye-Sensitized Solid-State Heterojunction Solar Cells
Abstract The dye-sensitized solar cell (DSSC) provides a technically and economically viable alternative concept to present-day p–n junction photovoltaic devices. In contrast to...
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times m...
Publication Info
- Year
- 1990
- Type
- article
- Volume
- 23
- Issue
- 6
- Pages
- 176-183
- Citations
- 80
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/ar00174a002