Abstract
The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992).< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Keywords
Affiliated Institutions
Related Publications
Compressed sensing
Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...
Atomic Decomposition by Basis Pursuit
The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packe...
The Capacity of Linear Channels with Additive Gaussian Noise
The standard method of computing the mutual information between two stochastic processes with finite energy replaces the processes with their Fourier coefficients. This procedur...
Effect of fading correlation on adaptive arrays in digital mobile radio
In this paper, we investigate the effect of correlations among the fading signals at the antenna elements of an adaptive array in a digital wireless communication system. With a...
Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit
This paper demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with $m$ nonzero entries in ...
Publication Info
- Year
- 1993
- Type
- article
- Volume
- 41
- Issue
- 12
- Pages
- 3397-3415
- Citations
- 8998
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/78.258082