Abstract

Feature pyramids are widely exploited by both the state-of-the-art one-stage object detectors (e.g., DSSD, RetinaNet, RefineDet) and the two-stage object detectors (e.g., Mask RCNN, DetNet) to alleviate the problem arising from scale variation across object instances. Although these object detectors with feature pyramids achieve encouraging results, they have some limitations due to that they only simply construct the feature pyramid according to the inherent multiscale, pyramidal architecture of the backbones which are originally designed for object classification task. Newly, in this work, we present Multi-Level Feature Pyramid Network (MLFPN) to construct more effective feature pyramids for detecting objects of different scales. First, we fuse multi-level features (i.e. multiple layers) extracted by backbone as the base feature. Second, we feed the base feature into a block of alternating joint Thinned U-shape Modules and Feature Fusion Modules and exploit the decoder layers of each Ushape module as the features for detecting objects. Finally, we gather up the decoder layers with equivalent scales (sizes) to construct a feature pyramid for object detection, in which every feature map consists of the layers (features) from multiple levels. To evaluate the effectiveness of the proposed MLFPN, we design and train a powerful end-to-end one-stage object detector we call M2Det by integrating it into the architecture of SSD, and achieve better detection performance than state-of-the-art one-stage detectors. Specifically, on MSCOCO benchmark, M2Det achieves AP of 41.0 at speed of 11.8 FPS with single-scale inference strategy and AP of 44.2 with multi-scale inference strategy, which are the new stateof-the-art results among one-stage detectors. The code will be made available on https://github.com/qijiezhao/M2Det.

Keywords

Pyramid (geometry)Feature (linguistics)Computer scienceArtificial intelligenceBlock (permutation group theory)Benchmark (surveying)Construct (python library)DetectorObject detectionObject (grammar)Pattern recognition (psychology)Feature extractionComputer visionMathematicsTelecommunications

Affiliated Institutions

Related Publications

Publication Info

Year
2019
Type
article
Volume
33
Issue
01
Pages
9259-9266
Citations
856
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

856
OpenAlex

Cite This

Qijie Zhao, Tao Sheng, Yongtao Wang et al. (2019). M2Det: A Single-Shot Object Detector Based on Multi-Level Feature Pyramid Network. Proceedings of the AAAI Conference on Artificial Intelligence , 33 (01) , 9259-9266. https://doi.org/10.1609/aaai.v33i01.33019259

Identifiers

DOI
10.1609/aaai.v33i01.33019259