Abstract

A low-density parity-check code is a code specified by a parity-check matrix with the following properties: each column contains a small fixed number <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j \geq 3</tex> of l's and each row contains a small fixed number <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k &gt; j</tex> of l's. The typical minimum distance of these codes increases linearly with block length for a fixed rate and fixed <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</tex> . When used with maximum likelihood decoding on a sufficiently quiet binary-input symmetric channel, the typical probability of decoding error decreases exponentially with block length for a fixed rate and fixed <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</tex> . A simple but nonoptimum decoding scheme operating directly from the channel a posteriori probabilities is described. Both the equipment complexity and the data-handling capacity in bits per second of this decoder increase approximately linearly with block length. For <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j &gt; 3</tex> and a sufficiently low rate, the probability of error using this decoder on a binary symmetric channel is shown to decrease at least exponentially with a root of the block length. Some experimental results show that the actual probability of decoding error is much smaller than this theoretical bound.

Keywords

Decoding methodsBinary numberDiscrete mathematicsBinary symmetric channelCode (set theory)MathematicsChannel (broadcasting)CombinatoricsAlgorithmStatisticsComputer scienceLow-density parity-check codeArithmeticTelecommunications

Affiliated Institutions

Related Publications

Compressed sensing

Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...

2006 IEEE Transactions on Information Theory 22524 citations

Communication Theory of Secrecy Systems*

THE problems of cryptography and secrecy systems furnish an interesting application of communication theory. <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="htt...

1949 Bell System Technical Journal 9088 citations

Publication Info

Year
1962
Type
article
Volume
8
Issue
1
Pages
21-28
Citations
10397
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

10397
OpenAlex

Cite This

Robert G. Gallager (1962). Low-density parity-check codes. IEEE Transactions on Information Theory , 8 (1) , 21-28. https://doi.org/10.1109/tit.1962.1057683

Identifiers

DOI
10.1109/tit.1962.1057683