Abstract
In this paper we propose an affordable solution to self-localization, which utilizes visual odometry and road maps as the only inputs. To this end, we present a probabilistic model as well as an efficient approximate inference algorithm, which is able to utilize distributed computation to meet the real-time requirements of autonomous systems. Because of the probabilistic nature of the model we are able to cope with uncertainty due to noisy visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, we are able to localize a vehicle up to 3m after only a few seconds of driving on maps which contain more than 2,150km of drivable roads.
Keywords
Affiliated Institutions
Related Publications
VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator
One camera and one low-cost inertial measurement unit (IMU) form a monocular visual-inertial system (VINS), which is the minimum sensor suite (in size, weight, and power) for th...
Fast Image Super-Resolution Based on In-Place Example Regression
We propose a fast regression model for practical single image super-resolution based on in-place examples, by leveraging two fundamental super-resolution approaches- learning fr...
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer ...
Publication Info
- Year
- 2013
- Type
- article
- Pages
- 3057-3064
- Citations
- 146
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/cvpr.2013.393