LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters

2006 Bioinformatics 646 citations

Abstract

Abstract Summary: We present a Markov chain Monte Carlo coalescent genealogy sampler, LAMARC 2.0, which estimates population genetic parameters from genetic data. LAMARC can co-estimate subpopulation Θ = 4Neμ, immigration rates, subpopulation exponential growth rates and overall recombination rate, or a user-specified subset of these parameters. It can perform either maximum-likelihood or Bayesian analysis, and accomodates nucleotide sequence, SNP, microsatellite or elecrophoretic data, with resolved or unresolved haplotypes. It is available as portable source code and executables for all three major platforms. Availability: LAMARC 2.0 is freely available at Contact: lamarc@gs.washington.edu

Keywords

Coalescent theoryMarkov chain Monte CarloBayesian probabilityExecutablePopulationMarkov chainMaximum likelihoodHaplotypeStatisticsMicrosatelliteHaplotype estimationExponential growthBiologyComputer scienceMathematicsGeneticsPhylogenetic treeGeneAllele

Affiliated Institutions

Related Publications

Publication Info

Year
2006
Type
article
Volume
22
Issue
6
Pages
768-770
Citations
646
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

646
OpenAlex

Cite This

Mary K. Kuhner (2006). LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics , 22 (6) , 768-770. https://doi.org/10.1093/bioinformatics/btk051

Identifiers

DOI
10.1093/bioinformatics/btk051