Abstract

t A set is convex if for every pair P, Q of points of the set the line segment PQ is contained in the set.* We call <f> convex on K if 0(J(zi+z 2 ) ) Si(<f>(zi) +<Kz 2 ) ) for all z h z 2 in K.

Keywords

MathematicsInequalityMathematical economicsMathematical analysis

Related Publications

Publication Info

Year
1937
Type
article
Volume
43
Issue
8
Pages
521-527
Citations
89
Access
Closed

External Links

Social Impact

Altmetric
PlumX Metrics

Social media, news, blog, policy document mentions

Citation Metrics

89
OpenAlex

Cite This

E. J. McShane (1937). Jensen’s inequality. Bulletin of the American Mathematical Society , 43 (8) , 521-527. https://doi.org/10.1090/s0002-9904-1937-06588-8

Identifiers

DOI
10.1090/s0002-9904-1937-06588-8