<i>Planck</i> 2018 results

N. Aghanim , Y. Akrami , M. Ashdown , N. Aghanim , Y. Akrami , M. Ashdown , J. Aumont , C. Baccigalupi , M. Ballardini , A. J. Banday , R. B. Barreiro , N. Bartolo , S. Basak , Richard A. Battye , K. Benabed , J.-P. Bernard , M. Bersanelli , P. Bielewicz , J. J. Bock , J. R. Bond , J. Borrill , F. R. Bouchet , F. Boulanger , M. Bucher , C. Burigana , R. C. Butler , E. Calabrese , J.-F. Cardoso , Julien Carron , A. Challinor , H. C. Chiang , Jens Chluba , L. P. L. Colombo , C. Combet , D. Contreras , B. P. Crill , F. Cuttaia , P. de Bernardis , G. de Zotti , G. de Zotti , J.‐M. Delouis , Eleonora Di Valentino , J. M. Diego , J. M. Diego , M. Douspis , A. Ducout , X. Dupac , S. Dusini , G. Efstathiou , F. Elsner , T. A. Enßlin , H. K. Eriksen , Y. Fantaye , M. Farhang , J. Fergusson , R. Fernández-Cobos , F. Finelli⋆ , F. Forastieri , M. Frailis , A. A. Fraisse , E. Franceschi , A. Frolov , S. Galeotta , S. Galli , K. Ganga , R. T. Génova-Santos , M. Gerbino , T. Ghosh , J. González-Nuevo , K. M. Górski , S. Gratton , A. Gruppuso , J. E. Gudmundsson , J. Hamann , Will Handley , F. K. Hansen , D. Herranz , S. R. Hildebrandt , E. Hivon , Zhiqi Huang , A. H. Jaffe , W. C. Jones , A. Karakci , E. Keihänen , R. Keskitalo , K. Kiiveri , J. Kim , T. S. Kisner , L. Knox , N. Krachmalnicoff , M. Kunz , H. Kurki‐Suonio , G. Lagache , J.-M. Lamarre , A. Lasenby , M. Lattanzi , C. R. Lawrence , M. Le Jeune , Pablo Lemos , J. Lesgourgues , F. Levrier , Antony Lewis , M. Liguori
2020 Astronomy and Astrophysics 12,547 citations

Abstract

We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 σ level. We find good consistency with the standard spatially-flat 6-parameter ΛCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Ω c h 2 = 0.120 ± 0.001, baryon density Ω b h 2 = 0.0224 ± 0.0001, scalar spectral index n s = 0.965 ± 0.004, and optical depth τ = 0.054 ± 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 θ * = 1.0411 ± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H 0 = (67.4 ± 0.5) km s −1 Mpc −1 ; matter density parameter Ω m = 0.315 ± 0.007; and matter fluctuation amplitude σ 8 = 0.811 ± 0.006. We find no compelling evidence for extensions to the base-ΛCDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N eff = 2.99 ± 0.17, in agreement with the Standard Model prediction N eff = 3.046, and find that the neutrino mass is tightly constrained to ∑ m ν &lt; 0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base ΛCDM at over 2 σ , which pulls some parameters that affect the lensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Ω K = 0.001 ± 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w 0 = −1.03 ± 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r 0.002 &lt; 0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations. The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 σ , tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.

Keywords

PhysicsCosmic microwave backgroundAstrophysicsSpectral indexHubble's lawOmegaPlanckSpectral densityCosmologyMatter power spectrumBaryon acoustic oscillationsLambdaCold dark matterDark energyReionizationBaryonParticle physicsAnisotropySpectral lineRedshiftQuantum mechanicsStatistics

Affiliated Institutions

Related Publications

<i>Planck</i>2015 results

We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationa...

2016 Astronomy and Astrophysics 10120 citations

Publication Info

Year
2020
Type
article
Volume
641
Pages
A6-A6
Citations
12547
Access
Closed

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

12547
OpenAlex
80
Influential
11291
CrossRef

Cite This

N. Aghanim, Y. Akrami, M. Ashdown et al. (2020). <i>Planck</i> 2018 results. Astronomy and Astrophysics , 641 , A6-A6. https://doi.org/10.1051/0004-6361/201833910

Identifiers

DOI
10.1051/0004-6361/201833910
arXiv
1807.06209

Data Quality

Data completeness: 84%