Abstract

Written for specialists working in optimization, mathematical programming, or control theory. The general theory of path-following and potential reduction interior point polynomial time methods, interior point methods, interior point methods for linear and quadratic programming, polynomial time methods for nonlinear convex programming, efficient computation methods for control problems and variational inequalities, and acceleration of path-following methods are covered. In this book, the authors describe the first unified theory of polynomial-time interior-point methods. Their approach provides a simple and elegant framework in which all known polynomial-time interior-point methods can be explained and analyzed; this approach yields polynomial-time interior-point methods for a wide variety of problems beyond the traditional linear and quadratic programs. The book contains new and important results in the general theory of convex programming, e.g., their conic problem formulation in which duality theory is completely symmetric. For each algorithm described, the authors carefully derive precise bounds on the computational effort required to solve a given family of problems to a given precision. In several cases they obtain better problem complexity estimates than were previously known. Several of the new algorithms described in this book, e.g., the projective method, have been implemented, tested on real world problems, and found to be extremely efficient in practice. Contents : Chapter 1: Self-Concordant Functions and Newton Method; Chapter 2: Path-Following Interior-Point Methods; Chapter 3: Potential Reduction Interior-Point Methods; Chapter 4: How to Construct Self- Concordant Barriers; Chapter 5: Applications in Convex Optimization; Chapter 6: Variational Inequalities with Monotone Operators; Chapter 7: Acceleration for Linear and Linearly Constrained Quadratic Problems

Keywords

Interior point methodRegular polygonPoint (geometry)AlgorithmMathematicsPolynomialConvex optimizationMathematical optimizationComputer scienceGeometryMathematical analysis

Related Publications

On Finding Primal- and Dual-Optimal Bases

We show that if there exists a strongly polynomial time algorithm that finds a basis which is optimal for both the primal and the dual problems, given an optimal solution for on...

1991 INFORMS Journal on Computing 101 citations

Publication Info

Year
1994
Type
book
Citations
4246
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

4246
OpenAlex

Cite This

Yurii Nesterov, Arkadi Nemirovski (1994). Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics eBooks . https://doi.org/10.1137/1.9781611970791

Identifiers

DOI
10.1137/1.9781611970791