Abstract
It has been recognized for some time that the spontaneous emission by atoms is not necessarily a fixed and immutable property of the coupling between matter and space, but that it can be controlled by modification of the properties of the radiation field. This is equally true in the solid state, where spontaneous emission plays a fundamental role in limiting the performance of semiconductor lasers, heterojunction bipolar transistors, and solar cells. If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.
Keywords
Affiliated Institutions
Related Publications
Approximate relativistic corrections to atomic radial wave functions*
The mass-velocity and Darwin terms of the one-electron-atom Pauli equation have been added to the Hartree-Fock differential equations by using the HX formula to calculate a loca...
The electronic states of Ar+2, Kr+2, Xe+2. I. Potential curves with and without spin–orbit coupling
The low-lying states of Ar+2, Kr+2, and Xe+2 have been investigated using the POL CI method. Spin–orbit coupling has been included with a simple atoms-in-molecule approach. The ...
Ab Initio Calculations on the Electronically Excited States of Small Helium Clusters
The vertical excitation energies of small helium clusters, He(7) and He(25), have been calculated using configuration interaction singles, and the character of the excited state...
Perspectives for dye-sensitized nanocrystalline solar cells
The dye-sensitized solar cells (DYSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the c...
Spontaneous Symmetry Breakdown without Massless Bosons
We examine a simple relativistic theory of two scalar fields, first discussed by Goldstone, in which as a result of spontaneous breakdown of $U(1)$ symmetry one of the scalar bo...
Publication Info
- Year
- 1987
- Type
- article
- Volume
- 58
- Issue
- 20
- Pages
- 2059-2062
- Citations
- 13746
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevlett.58.2059