Abstract
A tutorial-style introduction to a class of methods for extracting independent signals from a mixture of signals originating from different physical sources; includes MatLab computer code examples. Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code. Bradford Books imprint
Keywords
Related Publications
Active Learning with Statistical Models
For many types of machine learning algorithms, one can compute the statistically `optimal' way to select training data. In this paper, we review how optimal data selection techn...
Age and family relationship accentuate the risk of insulin-dependent diabetes mellitus (IDDM) in relatives of patients with IDDM.
The international community of diabetologists is rapidly becoming involved in intervention trials aimed at preventing insulin-dependent diabetes in high risk relatives. Whereas ...
Generating consensus sequences from partialorder multiple sequence alignment graphs
Abstract Motivation: Consensus sequence generation is important in many kinds of sequence analysis ranging from sequence assembly to profile-based iterative search methods. Howe...
Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit
This paper demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with $m$ nonzero entries in ...
Atomic Decomposition by Basis Pursuit
The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packe...
Publication Info
- Year
- 2004
- Type
- book
- Citations
- 425
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.7551/mitpress/3717.001.0001