Abstract
Mucoid strains of Pseudomonas aeruginosa produce a high-molecular-weight exopolysaccharide called alginate that is modified by the addition of O-acetyl groups. To better understand the acetylation process, a gene involved in alginate acetylation called algF was identified in this study. We hypothesized that a gene involved in alginate acetylation would be located within the alginate biosynthetic gene cluster at 34 min on the P. aeruginosa chromosome. To isolate algF mutants, a procedure for localized mutagenesis was developed to introduce random chemical mutations into the P. aeruginosa alginate biosynthetic operon on the chromosome. For this, a DNA fragment containing the alginate biosynthetic operon and adjacent argF gene in a gene replacement cosmid vector was utilized. The plasmid was packaged in vivo into lambda phage particles, mutagenized in vitro with hydroxylamine, transduced into Escherichia coli, and mobilized to an argF auxotroph of P. aeruginosa FRD. Arg+ recombinants coinherited the mutagenized alginate gene cluster and were screened for defects in alginate acetylation by testing for increased sensitivity to an alginate lyase produced by Klebsiella aerogenes. Alginates from recombinants which showed increased sensitivity to alginate lyase were tested for acetylation by a colorimetric assay and infrared spectroscopy. Two algF mutants that produced alginates reduced more than sixfold in acetyl groups were obtained. The acetylation defect was complemented in trans by a 3.8-kb XbaI-BamHI fragment from the alginate gene cluster when placed in the correct orientation under a trc promoter. By a merodiploid analysis, the algF gene was further mapped to a region directly upstream of algA by examining the polar effect of Tn501 insertions. By gene replacement, DNA with a Tn501 insertion directly upstream of algA was recombined with the chromosome of mucoid strain FRD1. The resulting strain, FRD1003, was nonmucoid because of the polar effect of the transposon on the downstream algA gene. By providing algA in trans under the tac promoter, FRD1003 produced nonacetylated alginate, indicating that the transposon was within or just upstream of algF. These results demonstrated that algF, a gene involved in alginate acetylation, is located directly upstream of algA.
Keywords
Affiliated Institutions
Related Publications
Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene.
We have determined the complete nucleotide sequence of the gene for the crown gall enzyme, octopine synthase. The sequence was derived from cloned fragments of the Agrobacterium...
Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells.
We constructed a series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells. The prototype recombinant in t...
Recombinant Genomes Which Express Chloramphenicol Acetyltransferase in Mammalian Cells
We constructed a series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells. The prototype recombinant in t...
Binary<i>Agrobacterium</i>vectors for plant transformation
A vector molecule for the efficient transformation of higher plants has been constructed with several features that make it efficient to use. It utilizes the trans acting functi...
Antimicrobial activity of the major components of the essential oil of <i>Melaleuca alternifolia</i>
Tea tree oil, or the essential oil of Melaleuca alternifolia , is becoming increasingly popular as a naturally occurring antimicrobial agent. The antimicrobial activity of eight...
Publication Info
- Year
- 1993
- Type
- article
- Volume
- 175
- Issue
- 16
- Pages
- 5057-5065
- Citations
- 154
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1128/jb.175.16.5057-5065.1993