Abstract

We study estimation and inference in settings where the interest is in the effect of a potentially endogenous regressor on some outcome. To address the endogeneity, we exploit the presence of additional variables. Like conventional instrumental variables, these variables are correlated with the endogenous regressor. However, unlike conventional instrumental variables, they also have direct effects on the outcome, and thus are “invalid” instruments. Our novel identifying assumption is that the direct effects of these invalid instruments are uncorrelated with the effects of the instruments on the endogenous regressor. We show that in this case the limited-information-maximum-likelihood (liml) estimator is no longer consistent, but that a modification of the bias-corrected two-stage-least-square (tsls) estimator is consistent. We also show that conventional tests for over-identifying restrictions, adapted to the many instruments setting, can be used to test for the presence of these direct effects. We recommend that empirical researchers carry out such tests and compare estimates based on liml and the modified version of bias-corrected tsls. We illustrate in the context of two applications that such practice can be illuminating, and that our novel identifying assumption has substantive empirical content.

Keywords

EndogeneityInstrumental variableEstimatorEconometricsInferenceContext (archaeology)Identification (biology)StatisticsOutcome (game theory)Causal inferenceComputer scienceMathematicsArtificial intelligence

Affiliated Institutions

Related Publications

Publication Info

Year
2014
Type
article
Volume
33
Issue
4
Pages
474-484
Citations
140
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

140
OpenAlex
26
Influential
93
CrossRef

Cite This

Michal Kolesár, Raj Chetty, John N. Friedman et al. (2014). Identification and Inference With Many Invalid Instruments. Journal of Business and Economic Statistics , 33 (4) , 474-484. https://doi.org/10.1080/07350015.2014.978175

Identifiers

DOI
10.1080/07350015.2014.978175

Data Quality

Data completeness: 81%