<i>Ab initio</i>calculation of force constants and equilibrium geometries in polyatomic molecules

1969 Molecular Physics 2,354 citations

Abstract

The general expression for the exact forces on the nuclei (negative derivatives of the total energy with respect to the nuclear coordinates) is applied for Hartree-Fock wavefunctions. It is suggested that force constants should be calculated by differentiating the forces numerically. This method, called the force method, is numerically more accurate and requires less computation than the customary one of differentiating the energy numerically twice. It permits the quick determination of the equilibrium geometry by relaxing the nuclear coordinates until the forces vanish. The unreliability of the methods using the Hellmann-Feynman forces is re-emphasized. The question of which force constants can be best calculated ab initio is discussed.

Keywords

Force constantAb initioWave functionPolyatomic ionComputationPotential energyPhysicsMoleculeChemistryConstant (computer programming)Classical mechanicsComputational chemistryAtomic physicsQuantum mechanicsMathematics

Affiliated Institutions

Related Publications

First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...

1997 Physical Review Letters 2708 citations

Publication Info

Year
1969
Type
article
Volume
17
Issue
2
Pages
197-204
Citations
2354
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

2354
OpenAlex

Cite This

Péter Pulay (1969). <i>Ab initio</i>calculation of force constants and equilibrium geometries in polyatomic molecules. Molecular Physics , 17 (2) , 197-204. https://doi.org/10.1080/00268976900100941

Identifiers

DOI
10.1080/00268976900100941