Abstract
The photocatalytic production of H2 in one step is potentially one of the most promising ways for the conversion and storage of solar energy. The paper overviews our recent studies on the photocatalysts splitting water into hydrogen under irradiation. The attention was mainly focused on the promotion effects of nanosized modifications in the interlayer and surface of photocatalysts for hydrogen evolution with visible light. The photocatalytic activity depended significantly on modification techniques, such as loading, proton exchange, and intercalation. The formation of a ''nest'' on the particle surface promoted a uniform distribution and strong combination of the nanosized particles on the surface of catalysts. By the methods of intercalation and pillaring as well as by selecting both host and guest, a large variety of molecular designed host–guest systems were obtained. Cadmium sulfide (CdS)-intercalated composites showed higher activity and stability. This activity of K4Ce2M10O30 (M = Ta, Nb) evolving H2 under visible light irradiation was enhanced by the incorporation of Pt, RuO2 and NiO as co-catalysts. Especially, the nanosized NiOx (Ni–NiO double-layer structure) greatly prompted the photocatalytic H2 evolution significantly.
Keywords
Affiliated Institutions
Related Publications
Development of Photocatalyst Materials for Water Splitting with the Aim at Photon Energy Conversion.
A photocatalyst which has extensively been studied so far is TiO2 with a 3.0-3.2eV band gap. Well-known photocatalysts with visible-light response are only Pt/CdS and WO3. Thus,...
Photocatalysis and solar hydrogen production
Abstract Photocatalytic water splitting is a challenging reaction because it is an ultimate solution to energy and environmental issues. Recently, many new powdered photocatalys...
THE PREPARATION AND CHARACTERIZATION OF HIGHLY EFFICIENT TITANIUM OXIDE–BASED PHOTOFUNCTIONAL MATERIALS
▪ Abstract Recent research trends of the preparation and characterization of highly efficient titanium oxide–based photocatalysts are reviewed on the basis of studies done in ou...
New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light
Overall water splitting to form hydrogen and oxygen over a heterogeneous photocatalyst using solar energy is a promising process for clean and recyclable hydrogen production in ...
Heterogeneous photocatalyst materials for water splitting
This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 8
- Issue
- 1-2
- Pages
- 76-81
- Citations
- 57
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1016/j.stam.2006.09.007