Abstract

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Appendix: Stan Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Funnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Generate One-Way Normal Pseudo-data . . . . . . . . . . . . . . . . . . . . . . . . 98 One-Way Normal (Centered) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 One-Way Normal (Non-Centered) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Many of the most exciting problems in applied statistics involve intricate, typically high-dimensional, models and, at least relative to the model complexity, sparse data. With the data alone unable to identify the model, valid inference in these circumstances requires significant prior information. Such information, however, is not limited to the choice of an explicit prior distribution: it can be encoded in the construction of the model itself.

Keywords

Monte Carlo methodStatistical physicsHybrid Monte CarloComputer scienceMarkov chain Monte CarloPhysicsMathematicsStatistics

Related Publications

Publication Info

Year
2015
Type
book-chapter
Pages
119-142
Citations
216
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

216
OpenAlex
4
Influential
5
CrossRef

Cite This

Michael Betancourt, Mark Girolami (2015). Hamiltonian Monte Carlo for Hierarchical Models. Current Trends in Bayesian Methodology with Applications , 119-142. https://doi.org/10.1201/b18502-11

Identifiers

DOI
10.1201/b18502-11

Data Quality

Data completeness: 81%