GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

2019 Physical Review X 3,382 citations

Abstract

We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mn>1</a:mn><a:mtext> </a:mtext><a:mtext> </a:mtext><a:msub><a:mrow><a:mi>M</a:mi></a:mrow><a:mrow><a:mo stretchy="false">⊙</a:mo></a:mrow></a:msub></a:mrow></a:math> during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (<d:math xmlns:d="http://www.w3.org/1998/Math/MathML" display="inline"><d:mi>O</d:mi><d:mn>1</d:mn></d:math>), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (<f:math xmlns:f="http://www.w3.org/1998/Math/MathML" display="inline"><f:mi>O</f:mi><f:mn>2</f:mn></f:math>), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between <h:math xmlns:h="http://www.w3.org/1998/Math/MathML" display="inline"><h:mrow><h:msubsup><h:mrow><h:mn>18.6</h:mn></h:mrow><h:mrow><h:mo>−</h:mo><h:mn>0.7</h:mn></h:mrow><h:mrow><h:mo>+</h:mo><h:mn>3.2</h:mn></h:mrow></h:msubsup><h:mtext> </h:mtext><h:mtext> </h:mtext><h:msub><h:mrow><h:mi>M</h:mi></h:mrow><h:mrow><h:mo stretchy="false">⊙</h:mo></h:mrow></h:msub></h:mrow></h:math> and <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:msubsup><k:mn>84.4</k:mn><k:mrow><k:mo>−</k:mo><k:mn>11.1</k:mn></k:mrow><k:mrow><k:mo>+</k:mo><k:mn>15.8</k:mn></k:mrow></k:msubsup><k:mtext> </k:mtext><k:mtext> </k:mtext><k:msub><k:mrow><k:mi>M</k:mi></k:mrow><k:mrow><k:mo stretchy="false">⊙</k:mo></k:mrow></k:msub></k:math> and range in distance between <n:math xmlns:n="http://www.w3.org/1998/Math/MathML" display="inline"><n:msubsup><n:mn>320</n:mn><n:mrow><n:mo>−</n:mo><n:mn>110</n:mn></n:mrow><n:mrow><n:mo>+</n:mo><n:mn>120</n:mn></n:mrow></n:msubsup></n:math> and <p:math xmlns:p="http://www.w3.org/1998/Math/MathML" display="inline"><p:mrow><p:msubsup><p:mrow><p:mn>2840</p:mn></p:mrow><p:mrow><p:mo>−</p:mo><p:mn>1360</p:mn></p:mrow><p:mrow><p:mo>+</p:mo><p:mn>1400</p:mn></p:mrow></p:msubsup><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>Mpc</p:mi></p:mrow></p:math>. No neutron star–black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of <r:math xmlns:r="http://www.w3.org/1998/Math/MathML" display="inline"><r:mrow><r:mn>110</r:mn><r:mo>−</r:mo><r:mn>3840</r:mn><r:mtext> </r:mtext><r:mtext> </r:mtext><r:msup><r:mrow><r:mi>Gpc</r:mi></r:mrow><r:mrow><r:mo>−</r:mo><r:mn>3</r:mn></r:mrow></r:msup><r:mtext> </r:mtext><r:msup><r:mrow><r:mi mathvariant="normal">y</r:mi></r:mrow><r:mrow><r:mo>−</r:mo><r:mn>1</r:mn></r:mrow></r:msup></r:mrow></r:math> for binary neutron stars and <u:math xmlns:u="http://www.w3.org/1998/Math/MathML" display="inline"><u:mrow><u:mn>9.7</u:mn><u:mo>−</u:mo><u:mn>101</u:mn><u:mtext> </u:mtext><u:mtext> </u:mtext><u:msup><u:mrow><u:mi>Gpc</u:mi></u:mrow><u:mrow><u:mo>−</u:mo><u:mn>3</u:mn></u:mrow></u:msup><u:mtext> </u:mtext><u:msup><u:mrow><u:mi mathvariant="normal">y</u:mi></u:mrow><u:mrow><u:mo>−</u:mo><u:mn>1</u:mn></u:mrow></u:msup></u:mrow></u:math> for binary black holes assuming fixed population distributions and determine a neutron star–black hole merger rate 90% upper limit of <x:math xmlns:x="http://www.w3.org/1998/Math/MathML" display="inline"><x:mrow><x:mn>610</x:mn><x:mtext> </x:mtext><x:mtext> </x:mtext><x:msup><x:mrow><x:mi>Gpc</x:mi></x:mrow><x:mrow><x:mo>−</x:mo><x:mn>3</x:mn></x:mrow></x:msup><x:mtext> </x:mtext><x:msup><x:mrow><x:mi mathvariant="normal">y</x:mi></x:mrow><x:mrow><x:mo>−</x:mo><x:mn>1</x:mn></x:mrow></x:msup></x:mrow></x:math>. Published by the American Physical Society 2019

Keywords

LIGOGravitational waveTransient (computer programming)PhysicsBinary numberAstrophysicsAstronomyComputer science

Affiliated Institutions

Related Publications

Publication Info

Year
2019
Type
article
Volume
9
Issue
3
Citations
3382
Access
Closed

External Links

Citation Metrics

3382
OpenAlex

Cite This

B. P. Abbott, R. Abbott, T. D. Abbott et al. (2019). GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X , 9 (3) . https://doi.org/10.1103/physrevx.9.031040

Identifiers

DOI
10.1103/physrevx.9.031040