Abstract

Abstract The second largest zone of coastal hypoxia (oxygen-depleted waters) in the world is found on the northern Gulf of Mexico continental shelf adjacent to the outflows of the Mississippi and Atchafalaya Rivers. The combination of high freshwater discharge, wind mixing, regional circulation, and summer warming controls the strength of stratification that goes through a well-defined seasonal cycle. The physical structure of the water column and high nutrient loads that enhance primary production lead to an annual formation of the hypoxic water mass that is dominant from spring through late summer. Paleoindicators in dated sediment cores indicate that hypoxic conditions likely began to appear around the turn of the last century and became more severe since the 1950s as the nitrate flux from the Mississippi River to the Gulf of Mexico tripled. Whereas increased nutrients enhance the production of some organisms, others are eliminated from water masses (they either emigrate from the area or die) where the oxygen level falls below 2 mg l −1 or lower for a prolonged period. A hypoxia-stressed benthos is typified by short-lived, smaller surface deposit-feeding polychaetes and the absence of marine invertebrates such as pericaridean crustaceans, bivalves, gastropods, and ophiuroids. The changes in benthic communities, along with the low dissolved oxygen, result in altered sediment structure and sediment biogeochemical cycles. Important fisheries are variably affected by increased or decreased food supplies, mortality, forced migration, reduction in suitable habitat, increased susceptibility to predation, and disruption of life cycles.

Keywords

Hypoxia (environmental)Benthic zoneOceanographyBenthosBiogeochemical cycleEnvironmental scienceBottom waterWater columnSedimentDischargeInvertebrateNutrientEcologyGeologyBiologyDrainage basinGeographyOxygenChemistry

Affiliated Institutions

Related Publications

Publication Info

Year
2002
Type
article
Volume
33
Issue
1
Pages
235-263
Citations
1281
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1281
OpenAlex
109
Influential
1100
CrossRef

Cite This

Nancy N. Rabalais, R. Eugene Turner, William J. Wiseman (2002). Gulf of Mexico Hypoxia, A.K.A. “The Dead Zone”. Annual Review of Ecology and Systematics , 33 (1) , 235-263. https://doi.org/10.1146/annurev.ecolsys.33.010802.150513

Identifiers

DOI
10.1146/annurev.ecolsys.33.010802.150513

Data Quality

Data completeness: 81%