Abstract

For ethical and economic reasons, it is important to design animal experiments well, to analyze the data correctly, and to use the minimum number of animals necessary to achieve the scientific objectives---but not so few as to miss biologically important effects or require unnecessary repetition of experiments. Investigators are urged to consult a statistician at the design stage and are reminded that no experiment should ever be started without a clear idea of how the resulting data are to be analyzed. These guidelines are provided to help biomedical research workers perform their experiments efficiently and analyze their results so that they can extract all useful information from the resulting data. Among the topics discussed are the varying purposes of experiments (e.g., exploratory vs. confirmatory); the experimental unit; the necessity of recording full experimental details (e.g., species, sex, age, microbiological status, strain and source of animals, and husbandry conditions); assigning experimental units to treatments using randomization; other aspects of the experiment (e.g., timing of measurements); using formal experimental designs (e.g., completely randomized and randomized block); estimating the size of the experiment using power and sample size calculations; screening raw data for obvious errors; using the t-test or analysis of variance for parametric analysis; and effective design of graphical data.

Keywords

StatisticianComputer scienceDesign of experimentsExperimental dataSample size determinationStatistical powerResearch designParametric statisticsVariance (accounting)Randomized experimentStatisticsMathematics

MeSH Terms

Animal WelfareAnimalsAnimalsLaboratoryData InterpretationStatisticalFemaleMaleMiceModelsAnimalRatsReproducibility of ResultsResearch Design

Affiliated Institutions

Related Publications

Quality by Experimental Design.

THE PHILOSOPHY OF EXPERIMENTATION Why Design Experiments? Organizing the Experiment The Neglected Response Variable STATISTICAL EXPERIMENTAL DESIGN The Factorial 2-Level Design ...

1996 Journal of the Royal Statistical Soci... 210 citations

Publication Info

Year
2002
Type
article
Volume
43
Issue
4
Pages
244-258
Citations
983
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

983
OpenAlex
33
Influential
781
CrossRef

Cite This

Michael F. W. Festing, Douglas G. Altman (2002). Guidelines for the Design and Statistical Analysis of Experiments Using Laboratory Animals. ILAR Journal , 43 (4) , 244-258. https://doi.org/10.1093/ilar.43.4.244

Identifiers

DOI
10.1093/ilar.43.4.244
PMID
12391400

Data Quality

Data completeness: 90%