Abstract
This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho's basis pursuit (BP) paradigm can recover the optimal representation of an exactly sparse signal. It leverages this theory to show that both OMP and BP succeed for every sparse input signal from a wide class of dictionaries. These quasi-incoherent dictionaries offer a natural generalization of incoherent dictionaries, and the cumulative coherence function is introduced to quantify the level of incoherence. This analysis unifies all the recent results on BP and extends them to OMP. Furthermore, the paper develops a sufficient condition under which OMP can identify atoms from an optimal approximation of a nonsparse signal. From there, it argues that OMP is an approximation algorithm for the sparse problem over a quasi-incoherent dictionary. That is, for every input signal, OMP calculates a sparse approximant whose error is only a small factor worse than the minimal error that can be attained with the same number of terms.
Keywords
Affiliated Institutions
Related Publications
Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit
This paper demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with $m$ nonzero entries in ...
Atomic Decomposition by Basis Pursuit
The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packe...
Uncertainty principles and ideal atomic decomposition
Suppose a discrete-time signal S(t), 0/spl les/t<N, is a superposition of atoms taken from a combined time-frequency dictionary made of spike sequences 1/sub {t=/spl tau/}/ and ...
Compressed sensing
Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible ...
Sparsity and incoherence in compressive sampling
We consider the problem of reconstructing a sparse signal x^0\\in{\\bb R}^n from a limited number of linear measurements. Given m randomly selected samples of Ux0, where U is an...
Publication Info
- Year
- 2004
- Type
- article
- Volume
- 50
- Issue
- 10
- Pages
- 2231-2242
- Citations
- 3639
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tit.2004.834793